If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+20t+16=0
a = 4; b = 20; c = +16;
Δ = b2-4ac
Δ = 202-4·4·16
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12}{2*4}=\frac{-32}{8} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12}{2*4}=\frac{-8}{8} =-1 $
| 2x-42=10 | | 2x-2x=12-6 | | 5x+28+5x-20+x+7=180 | | (y/2)+7=49 | | 12/4y=63/4 | | -2+9y=-12 | | 3.56=20*0.75^x | | -2+9y=12 | | X^3-2x=115 | | 3(x+4)-(-5x+2)=170 | | -3q^2-2q+1=0 | | 4(4x+10)=50+2x | | 11x-27=6x-2 | | n=4-11 | | 5*(31.25)+3y=114 | | 3/t^2=6/t^2+8t | | 19-2(3x-5)=15 | | 4-12=+32+t | | 7−5+3x−1=x4+8 | | 7−5+3x−1=3+7 | | 0.4(2x+0.3)=1/3(6x-7.2) | | 5x-17+Y=48 | | 7−5+3x−1=7+3 | | -3.5*z=2.31 | | 7−5+3x−1=7-5+3x-1=7+5 | | 6z-7=2z | | 15x-60=400 | | 7−5+3x−1=7-5+3x-1=x+x | | 1/5x+14=2/9 | | -6m=2(3m+-1) | | 25x+200=350 | | 5(x+10=5x+50 |